Pseudo primitive idempotents and almost 2-homogeneous bipartite distance-regular graphs

نویسنده

  • Michael S. Lang
چکیده

Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3 and intersection numbers ci , bi (0 ≤ i ≤ D). By a pseudo cosine sequence of Γ we mean a sequence of scalars σ0, . . . , σD such that σ0 = 1 and ciσi−1 + biσi+1 = kσ1σi for 1 ≤ i ≤ D − 1. By an associated pseudo primitive idempotent we mean a nonzero scalar multiple of the matrix ∑D i=0 σi Ai , where A0, . . . , AD are the distance matrices of Γ . Our main result is the following: Let σ0, . . . , σD denote a pseudo cosine sequence of Γ with σ1 6∈ {−1, 1} and let E denote an associated pseudo primitive idempotent. The following are equivalent: (i) the entrywise product of E with itself is a linear combination of the all-ones matrix and a pseudo primitive idempotent of Γ ; (ii) there exists a scalar β such that σi−1−βσi +σi+1 = 0 for 1 ≤ i ≤ D−1. Moreover, Γ has such a pseudo cosine sequence and pseudo primitive idempotent if and only if Γ is almost 2-homogeneous with c2 ≥ 2. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Graphs and Their Primitive Idempotents

In this paper, we prove the following two theorems. Theorem 1 Let 0 denote a distance-regular graph with diameter d ≥ 3. Suppose E and F are primitive idempotents of 0, with cosine sequences σ0, σ1, . . . , σd and ρ0, ρ1, . . . , ρd , respectively. Then the following are equivalent. (i) The entry-wise product E ◦ F is a scalar multiple of a primitive idempotent of 0. (ii) There exists a real nu...

متن کامل

Taut Distance-Regular Graphs of Odd Diameter

Let denote a bipartite distance-regular graph with diameter D ≥ 4, valency k ≥ 3, and distinct eigenvalues θ0 > θ1 > · · · > θD . Let M denote the Bose-Mesner algebra of . For 0 ≤ i ≤ D, let Ei denote the primitive idempotent of M associated with θi . We refer to E0 and ED as the trivial idempotents of M . Let E, F denote primitive idempotents of M . We say the pair E, F is taut whenever (i) E,...

متن کامل

Triangle- and pentagon-free distance-regular graphs with an eigenvalue multiplicity equal to the valency

We classify triangleand pentagon-free distance-regular graphs with diameter d ≥ 2, valency k, and an eigenvalue multiplicity k. In particular, we prove that such a graph is isomorphic to a cycle, a k-cube, a complete bipartite graph minus a matching, a Hadamard graph, a distance-regular graph with intersection array {k, k − 1, k − c, c, 1; 1, c, k − c, k − 1, k}, where k = γ(γ + 3γ + 1), c = γ(...

متن کامل

Bipartite distance-regular graphs and the Q-polynomial property; the combinatorial meaning of q

These problems are inspired by a careful study of the papers of concerning bipartite distance-regular graphs. Throughout these notes we let Γ = (X, R) denote a bipartite distance-regular graph with diameter D ≥ 3 and standard module V = C X. We fix a vertex x ∈ X and let E denote the corresponding dual primitive idempotents. We define the matrices R = D i=0 E * i+1 AE * i , L= D i=0 E * i−1 AE ...

متن کامل

Distance regular covers of the complete graph

Distance regular graphs fall into three families: primitive, antipodal, and bipar-tite. Each antipodal distance regular graph is a covering graph of a smaller (usually primitive) distance regular graph; the antipodal distance graphs of diameter three are covers of the complete graph, and are the first non-trivial case. Many of the known examples are connected with geometric objects, such as pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2008